
International Journal of Theoretical Physics, Vol. 22, No. 5. 1983 

Vanishing of the Cosmological Constant in 
Non-Abelian Kaluza-Klein Theories 

M. W. Kalinowski 

Institute of Philosophy and Sociology; Polish Academy of Sciences, 00-330 Warsaw, 
Nowy Swiat 72, Poland 

Received September 15, 1981 

We present a new approach to the unification of gravity and non-Abelian gauge 
fields in the framework of Kaluza-Klein theory. It consists in introducing a new 
connection on the (n +4)-dimensional manifold P (metrized principal fiber 
bundle). This connection is metrical, but with nonvanishing torsion. An enor- 
mous cosmological term in the Einstein equations vanishes due to this connec- 
tion. The new connection simultaneously cancels Planck's mass term in the Dirac 
equation for the five-dimensional case. The usual interpretation of geodesic 
equations is still valid. 

1. I N T R O D U C T I O N  

In this paper  we propose a way of avoiding an enormous cosmological 
constant  f rom the Ka luza -Kle in  theory for an arbitrary non-Abelian group 
(Cho, 1975). The classical Ka luza-Kle in  theory (Kaluza, 1921) unifies two 
major  concepts in physics: (1) local coordinate invariance; (2) local gauge 
invariance. The first is basic for general relativity theory and the second is 
fundamental  for electrodynamics. The Ka luza -Kle in  theory reduces these 
two concepts to the first, but  in a more than four-dimensional world. In the 
electromagnetic case we deal with a five-dimensional manifold. 

In the papers by Lichnerowicz (1955a), Rayski (1965), Tonnelat  (1965), 
and Bergman (1942) one may find both the consecutive steps in the creation 
of  the theory and various approaches to it. The final form of the theory was 
achieved in Bergman (1942). The equivalence of Kaluza and Klein's and 
Ut iyama 's  (1956) theories of gauge fields was discovered by Trau tman  
(1970). Natural ly  Ut iyama 's  approach is more general and makes possible 
the creation of unified theories of the Yang-Mi l l s '  field and gravitation. In 
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all these approaches the authors use a Riemannian connection on a five- 
dimensional manifold. 

Now we know the principle of a local invariance is fundamental also 
for weak and strong interactions (Weinberg-Salam model, QCD), but the 
gauge groups are non-Abelian. Thus it seems natural and important to 
generalize the Kaluza-Klein procedure from the Abelian U(1) group to 
non-Abelian groups. This is done by Kerner (1968) and Cho (1975). The 
authors work with a Riemannian connection on an (n +4)-dimensional 
manifold. Einstein equations with the energy momentum tensor of 
Yang-Mills fields and Yang-Mills equations are obtained as general results 
in Cho (1975) and Kerner (1968). Unfortunately these Einstein equations 
have a cosmological term and the cosmological constant is enormous, about 
1/121, where lvl = ( G h / C 3 )  I/2 is a Planck's length. This is a pity, and may 
lead one to suspect that the Kaluza-Klein approach fails. 

There are other obstacles. In the classical Kaluza-Klein theory (five- 
dimensional) there are no "interference effects" between gravitational and 
electromagnetic fields. W. Pauli in 1933 said that electricity and gravity 
were separated like oil and water in this theory. This theory reproduces (in 
the five-dimensional case) the well-known Einstein and Maxwell equations. 
But one may obtain some gravitational-electromagnetical effects if one 
introduces spinor fields on a five-dimensional manifold and generalize 
minimal coupling scheme. In this way we may obtain a new effect, the 
dipole electric moment of fermion. This was done first by W. Thirring 
(1972). But, unfortunately Thirring's results were obtained at some price. 
Namely, there exists an unwanted minimal fermion mass (of order 1 
#g)--Planck's  mass term. 

Summing up, one may say that this approach fails. But the general idea 
is beautiful and elegant and it would be very important to avoid all these 
troubles. The general way is as follows: to change the geometry of the 
(n + 4)-dimensional manifold to cancel the cosmological constant. This was 
done in Kopczynski (1979, 1980), Orzalesi and Pauri (1981), and Orzalesi 
(1981). In order to cancel Planck's mass term in the Dirac equation in 
Klein-Kaluza theory, one is forced to introduce a new kind of gauge 
derivative for the spinor field (Kalinowski, 1981 a, b) (five-dimensional case). 
This new gauge derivative induces on the five-dimensional manifold a new 
connection. It is very easy to generalize this connection to the (n +4)-  
dimensional case. One may ask: What about the cosmological constant for 
such a Klein-Kaluza theory? The answer is: It  vanishes. Thus, it seems that 
this connection is distinguished. Thus we avoid two basic troubles: an 
enormous cosmological constant in the Einstein equations and Planck's 
mass term in the Dirac equation. Simultaneously we get some "interference 
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effects" between gravitational and gauge fields (electromagnetic or 
Yang-Mills) .  

The paper is organized as follows. In Section 2 we introduce all 
geometrical quantities and notations which we use throughout the paper. In 
Section 3 we deal with the Kaluza-Klein  theory. We introduce the new 
connection o3AB on P, calculate its torsion and curvature and prove that in 
scalar curvature there is no cosmological constant. We also prove that the 
connection is metrical and derive Einsteins' and Yang-Mil ls '  equations. It is 
proved that the normal interpretation of a geodesic equation (as an equation 
of motion for a test particle) is still valid. 

2. E L E M E N T S  OF GEOMETRY 

In this section we introduce the notations and define geometric quanti- 
ties used in the paper. We use a smooth principal bundle P, which includes 
in its definition the following list of differentiable manifolds and smooth 
maps: 

A total (bundle) space P. 
A Lie group G-structural group. 
A base space E; in our case it is a space-time. 
A projection ~r: P ---, E. 
A map ~: P • G---, P defining the action of G on P, such that if 

a, b ~ G and e ~ G is the unit element then 

~ p ( a ) o q ~ ( b ) = e p ( b a )  and c p ( e ) = i d  (1) 

where ~p( a )  p = ~p( p ,  a) ,  and moreover 

~. o ~o(a) = ~r 

A connection form w on P with values in the Lie algebra of group G. 

Let cp'(a) be the tangent map to cp(a) whereas ~o*(a) is contragredient 
to q~(a) at point a. The form w is a form of a d  type, i.e., 

ep*( a )~o = ad'~ _ Iw (2) 

where a d '  a _ ~ is the tangent map to the internal automorphism of the group 

a d o ( b  ) = aba -1  

Due to the form w we may introduce the distribution field of linear elements 
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H,, r ~ P, where H r c Tr(P ) is a subspace of the space tangent to P at a 
point r and 

v e n  c . , . , . ( v ) = O  (3) 

We have 

Tr (P)  = KeH, .  (4) 

where H, is called a subspace of horizontal vectors and V, of vertical vectors. 
For vertical vectors v E V, we have ~'(V) = 0. This means that v is tangent 
to fibers. Let us define 

v = h o r ( v ) + v e r ( v ) ,  hor (v)  �9 H r, ver(v)  ~ V r (5) 

It is known that the distribution H~ is equivalent to a choice of connection 
o~. We use the operation "hor"  for forms, i.e., 

(horfl)(  X, Y) = fl(hor X, hor Y) (6) 

where 

X, Y e T r ( P )  

The two-form of curvature of connection is 

s = hor d~o (7)  

It is also a form of " a d "  type like ~o; s obeys the structural Cartan 
equation: 

(s) 

where 

[~,  o~](X, Y) = [~o(X), ~ ( Y ) ]  

Bianchi's identity for ~o is 

hor d s  = 0 

For the principal 
Figure 1. 

(9) 

fiber bundle we use the convenient scheme shown in 
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Fig. I. Principal fiber bundle P. 

The  map  e: E D U ~ P ,  so that  e o 7r = id is cal led a cross section. F r o m  
the physical  po in t  of  view this means  choos ing  a gauge. Thus  

e*o~ = e*( ~"X.)+ A~I~X. 

e*f~=e*(~2aX,~) =• O~X, ~_. ~.v A (10)  

Fur the r  we in t roduce  the no ta t ion  

where O" = 7r*(0 ~) and 

F ~  = a~A~ - a~.4;, + r .  A~Ac " . - . b c ~ L t t . l  v 

The  X. ,  a = 1,2 . . . . .  d im G = n are genera tors  of Lie a lgebra  of  group G and 
[X~, Xb] = CfbX c. A covar ian t  der iva t ion  d I on P is def ined  as follows: 

diet' = h o r d 9  (12) 

This  der iva t ion  is cal led the "gauge"  der ivat ion,  where 9 is for example  a 
sp inor  field on P. F o r  a pr inc ipa l  f iber  bund le  P it is poss ible  to in t roduce  a 
na tura l  met r iza t ion  in the fol lowing way: 

y( X, Y)  = g(Tr'X, ~r'Y)+ X2. h (co ( X ) ,  o: ( Y ) )  (13) 

X, Y ~ T ( P ) ,  0 < X = const  

where h is a Ki l l ing tensor  on a group G. It  is obvious  that  G must  be 
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semisimple. We have hab = CfdCd o where C[b are structural constants of 
Lie's algebra of group G. The formula (13) was proposed by A. Trautman 
(1970). The tensor 3' is b-invariant with respect to group G. 

In this paper we will use also a finear connection on manifolds P and E 
using the formalism of differential forms. So the basic quantity is a 
one-form of connection O~AB. The two-form of curvature is 

(14) 

and the two-form of torsion is 

0 A = D O  A (15) 

where 0 A are basic forms, and D means exterior covariant derivation with 
respect to ~0AB. The following relations define the interrelation between our 
symbols and generally used ones: 

= r % 0  r 

oA_)cnA ~B oC -- ~ . B C  ~ A (16) 

~A __• A OCA 0 o 
�9 B - -  2 . B C D  

where FAc are connection coefficients (they do not have to be symmetrical 
in indices B and C), R A is a curvature tensor, and A Q.Bc is a torsion �9 B C D  

tensor. Covariant exterior derivation with respect to o~ is given by 

D ~  A = dE A + tOA. C Er 

(17) 

The forms of curvature f~.A s and torsion | obey Bianchi's identities 

Df~.AB = 0 

DO A = ~A. B A 0 B (18) 

All quantities introduced in this paper and their precise definitions can be 
found in the papers by Kobayashi and Nomizu (1963), Trautman (1970, 
1971, 1980), and Lichnerowicz (1955b). 
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3. T H E  KLEIN-KALUZA T H E O R Y  

Let us introduce the principal fiber bundle P over the space-time E 
with the structural group G and with the projection r Now we turn to the 
metrization of bundle P. Let us suppose that (E,  g)  is a manifold with a 
metric tensor g and Riemannian connection ~ ,  where g = g~0~ |  0~. The 
signature of g is ( -  - - + ) and 0~ is a frame on E. Let us introduce natural 
frame on P: 

O A = ( T r * ( O ~ ) , O a = ) ~ ) ,  h > 0,const (19) 

~0 = 60~X~ is a connection on P. It  is convenient to introduce the following 
notations. Capital Latin indices A , B , C  run 1,2,3,4 . . . .  n + 4 ,  d i m G = n .  
Lower case Greek indices a,/3, ~,, 3 = 1,2, 3, 4, and lower case Latin indices 
a , b , c , d = 5 , 6  . . . . .  n + 4 .  The symbol " - "  over 0 ~ and t%# (i.e., 0~, ~ )  
indicates that both quantities are defined on E. 

Let us introduce now a tensor -/=- "L4 s 0A| 0 B on the manifold P in the 
natural way (Trautman, 1970). Let X, Y ~ Tt=(P  ). Thus according to for- 
mula (13) we have 

x, r )  = + hodo(x )  o (r) 

o r  

y = qr*g + habO~| b (20) 

Tensor "y has signature 

( - - -  + = - . . . .  -;) 

n times 

In this particular frame this tensor has a form 

YAB = 0 hab 

It is clear that the frame 0 A is partially nonholonomic, because 

2~ 2 CbcO ^ 0 c ~ 0  

We also introduce a dual frame 

(22) 

Y(fA) = ~'aB OB (23) 
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We have ~A = (~,, ~o) and according to Section 2 

E T = 0  
(24) 

Thus ~ are Killing vectors of the metric 7- Let us define now Riemannian 
connection WAB on P and exterior covariant derivative D with respect to ~An 
such that 

DTAB=0 and D O A = O  (25) 

The solution of (25) is 

a = . *  

T 
r ~ - -  r ~ - -  2 Oot~b  0 (26) 

1 
~ ab = - -  ('~ba 2 ~  C ~ b f l r  

0~AB is invariant with respect to an action of group G (Cho, 1975; 
Kopczyflski, 1980). In the papers Kalinowski (1981a, b) we introduce a new 
kind of gauge derivative for spinor field 't'. Due to the derivative we avoid 
some troubles which appear in Thirring (1972). We get for the electromag- 
netic case [G = U(1)] the dipole electric moment  of the fermion without 
Planck's mass term in Dirac equation. Now we recall a definition of D: 

~ ' t '  = hor DxI ' -- dlxt ' + hor(t~AB)rAB~ (27)  

It is easy to see that in this case we work rather with the connection 

~ B = hor( oa A n) (28) 

than %~B. 
It would be interesting to examine this connection in the framework of 

the Klein-Kaluza  theory, d~AB is invariant with respect to an action of group 
G, because the group action of G does not mix horizontal and vertical parts. 
We proceed as follows. First we calculate the connection coefficients O3AB. 
Then we calculate curvature forms, the Ricci tensor and the curvature 
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scalar. From the Hilbert variational principle with respect to g~, and the 
connection of bundle P we get gravitational and Yang-Mills equations. One 
obtains 

h 
~.b = - ~b.  = -- ~ H,~;,b 0~' 

&.b = ~ = 0 (29) 

It is easy to check that o3AB is metrical, but with nonvanishing torsion 

DrAB = O, ~),4 = bOA . 0 (30) 

From (29) and (30) we get 

~ a =  1 
2X C%Ob A 0 c (31) 

The torsion is a nonhorizontal form (horizontality is understood in the sense 
of the connection to of bundle P).  Now we calculate curvature two-forms for 

^ 

toAB' 

~".~-- ~ r * ( f l S ) -  h,bH~.[,'Hl,18) .boy A 08 (32) 

where fl~# is a curvature two-form for ~ :  

---- ~. gau---ge[8 H 1 Cdana..tdO~, A 0 a, (33) �9 b 2 V ~]b0 ~ A 0  ~ -  

gauge 
where XT~ H e is a gauge (with respect to to) and generally covariant .y 

derivative with respect to the connection ~ on E 

= - .b ts"H.rplb 08 A 0 ~ (34) 

^ 

After some calculations one gets the curvature tensor RABco and the Ricci 
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tensor. Then one obtain the curvature scalar/~, 

X2 
R~,tJ = R,~A#* A = R'#~ + --h"bH'r"4 "~ H~'~'b" 

k o . = 0  (35) 

gau____ge 

i~oo = ~ v~ H~o 

and 

/~ab = 0 

- -  ~k2 2 ~__~k2 2 (36) k = R A A = R - - u  = -~-F 

where H 2 = "ab"'~v""t' r..la rrt~,,h__-- F 2 = habF~vF~'b.  Thus we see we get k as a sum 
of two Lagrangians: R (for a gravitational field) and - ( ~ 2 / 4 ) F  2 (for 
Yang-Mills' field). In (36) there is no a cosmological constant. From the 
variational principle for k with respect to g~a and A~ 

~k 2 
~fvR(-~)l/2dn+4x~fu(R-~F2)(-g)l/2d4xfG (--~h)l/2dnx~-O 

(37) 

1 8rrG T 
R,~t~ - - ~ g , ~ R  = C4 o~fl 

gauge 

v ,  F~ ~ = 0 (38) 

where 

1 h 

where 

7 = d e t y A B = d e t g ~ o . d e t h a b = g . h ,  V = U •  

We get the Einstein equations and Yang-Mills equations 
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and we put, 

X = 2~/-G/C 2 

Now we interpret an equation of geodesic line for the connection ~3AB. We 
have 

U B ~TBU A = 0 (39) 

where uA('c) is a vector such as g,,aU"U I~ = 1 and U b is of " a d "  type. From 
(39) and (29) one easily gets 

D U" ;k UbHabU~'o 0 
d~ 2 

d U  = 0 (40) 
dl" 

where D/d'r  is a covariant derivation along the a line to which U ~ is 
tangent. The first equation of (40) is an equation of motion of a matter 
point of qb /mo  = 2kub/2 in both gravitational and Yang-Mills '  field [qb is 
a color (isotopic) charge, and m 0 is a rest mass]. The second equation of (40) 
means constancy of q i /mo  along the world line of a particle. In the case 
G = U(1) (electromagnetic) the first equation is a classical equation for a 
charged particle moving in gravitational and electromagnetic fields (Lorentz's 
force). In the general case the equation is called Wong's equation (Kerner, 
1968). Thus the usual interpretation of the geodesic line equation in the 
Klein-Kaluza theory is valid in our approach. 

4. CONCLUSION 

The connection o3.AB seems to be distinguished. Due to this connection 
we cancel the enormous cosmological term in the Einstein equations for 
non-Abelian Kaluza-Klein theory. Simultaneously the same connection 
cancels Planck's mass term in the Dirac equation on a five-dimensional 
manifold without losing "interference effects" between gravitation and 
electromagnetism--i.e., the dipole electric moment of the fermion. It obvi- 
ously cancels such terms in the Dirac equation on an (n +4)-dimensional 
manifold and one may obtain some "interference effects" between gravi- 
tation and the Yang-Mills field. But interpretation of these new terms 
remains to be found. They are analogous to dipole moments of the fermion 
for the "electric part" of the Yang-Mills fields. The usual interpretation of 
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the geodesic line equation is still valid. r is metrical and invariant with 
respect to an action of the group G. 
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